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A solution to the BBGKY hierarchy for nonequilibrium distribution functions
is obtained within modified boundary conditions. The boundary conditions take
into account explicitly both the nonequilibrium one-particle distribution func-
tion as well as local conservation laws. As a result, modified group expansions
are proposed. On the basis of these expansions, a generalized kinetic equation
for hard spheres and a generalized Bogolubov-Lenard-Balescu kinetic equation
for a dense electron gas are derived within the polarization approximation.
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1. INTRODUCTION

The construction of kinetic equations for dense gases, liquids and plasma,
where a small parameter (density or interaction) is absent, still remains one
of the most significant complication in the kinetic theory of classical
systems. A number of difficult tasks centre around it. The study of solutions
to the BBGKY hierarchy for nonequilibrium distribution functions in view
of interparticle correlations could be considered as a way to solve this
problem.

Recently, a kinetic equation of the revised Enskog theory for a dense
system of hard spheres and an Enskog-Landau kinetic equation for a dense
system of charged hard spheres have been obtained from the BBGKY
hierarchy in the "pair" collisions approximation. (1-3) It is necessary to
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notice that this approximation does not correspond to the usual two-par-
ticle approximation, inherent in the Boltzmann theory, because an essential
part of the many-particle correlations is implicitly taken into account by
the pair quasiequilibrium distribution function g 2 ( r 1 , r 2 ; t ) .

To analyze solutions to the BBGKY hierarchy(1,2) in higher approxi-
mations on interparticle correlations, it is more convenient to use the
concept of group expansions.(4-6) This has been applied to the BBGKY
hierarchy in previous investigations(4-17) using boundary conditions which
correspond to the weakening correlations principle by Bogolubov.(18) The
same conception has been involved in papers of Zubarev and
Novikov,(5,19,21) where a diagram method for obtaining solutions to the
BBGKY hierarchy was developed. Moreover, in papers by Zubarev et
al.(22,23) a consistent description of kinetics and hydrodynamics has been
proposed. It is based on a new formulation of boundary conditions for the
Liouville equation and BBGKY hierarchy. In particular, this formulation
takes into account interparticle correlations which are connected with local
conservation laws.

In this paper, the conception of group expansions will be applied to
the BBGKY hierarchy with modified boundary conditions which take into
account both the nonequilibrium behaviour of one-particle distribution
function and local conservation laws (Section 2). In Sections 3 and 4 it will
be demonstrated on the basis of the modified group expansions how to
obtain a generalization of some known kinetic equations for hard spheres
and homogeneous plasma to the case of high densities. Advantages and
shortcomings of the proposed approach are discussed concisely in conclu-
sion and at the end of some sections.

2. THE BBGKY HIERARCHY WITH MODIFIED BOUNDARY
CONDITIONS

The BBGKY hierarchy of equations for nonequilibrium distribution
functions of classical interacting particles has been obtained in the paper(22)

on the basis of assembling of time retarded solutions for the Liouville equa-
tion with the modified Bogolubov's condition of weakening correlations
between particles. According to the Zubarev's nonequilibrium statistical
operator method,(24,25) the total nonequilibrium distribution function
Q(XN; t) for all N particles of a system satisfies the following asymptotic
condition:
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Here, i = x — 1 , and the limit t 0 - > — i is taken after thermodynamic
limiting transition N - » i , V-> i, N/ V-> const; LN is the Liouville
operator:

where £ tends to + 0 after the thermodynamic limiting transition. The quasi-
equilibrium distribution function Qq(x

N; t) is determined from the condition
of maximum for informational entropy at fixed values of the single particle
distribution function f1(x1; t) and average density of the interaction energy
< e i n t ( r ) > t . < • • • > t = f d F N . . . Q ( x N ; t ) , d F N = ( d x ) N / N ! . This corresponds
to taking into account correlations, related to the conservations laws of
hydrodynamical variables for particles density n(r; t), momentum j(r; t)
and full energy f(r; f).(23)

The boundary condition (2.1) is equivalent to the transition from the
Liouville equation to a modified one:(24,25)

975

<Pjk is the interaction energy between two particles j and k; xj= {r, p} is the
set of phase variables (coordinates and momenta).

Let us consider time scales when details of initial state Q(XN, t0)
become not so important, i.e., when t» t0. Then, to avoid the dependency
on t0 let us average the formal solution to the Liouville equation
Q(XN; t) = e - i L ( t - t 0 ) Q ( x N ; t0) with respect to initial times in the range t0-t
and make the limiting transition t0 — t-> i,(24,25)

This equation contains a small source on the right-hand side, which
destroys the invariance with respect to time inversion.



where e is the natural logarithm base. Then, the Liouville equation with a
small source (2.4) in view of (2.5) corresponds to the abbreviated descrip-
tion of time evolution of the system on a kinetic stage when only the
oneparticle distribution function is considered as a slow variable. However,
there are always additional quantities, which vary in time slowly, because
they are locally conserved. In the case of an onecomponent system, the
mass density p(r; t), momentum j(r; t) and total energy S(r; t) belong to
those quantities. At long times they satisfy the generalized hydrodynamics
equations. Generally speaking, the equation for f1(x; t) should be con-
jugated with these equations. For low density gases, such a conjugation can
be made, in principle, with arbitrary precision in each order over density.
In high density gases and liquids, when a small parameter is absent, the
correlation times corresponding to hydrodynamic quantities become to be
commensurable with characteristic times of varying of oneparticle distribu-
tion functions. Therefore, in dense gases and liquids the kinetics and hydro-
dynamics are closely connected between themselves and they should be
considered simultaneously. That is why, manyparticle correlations, related
to the local conservation laws of mass, momentum and total energy, can
not be neglected.(24,25) The local conservation laws affect on kinetic
processes, because of the interaction of selected particles group with other
particles of a system. This interaction is especially important in the case of
high densities, and it must be included into consideration. Then at the con-
struction of kinetic equations for high densities, it is necessary to choose
the abbreviated description of nonequilibrium system in such a form to
satisfy the true dynamics of conserved quantities automatically. To this
end, the densities of hydrodynamic variables should be included together
with the oneparticle distribution function f 1 ( x ; t) into the set of parameters
of the abbreviated description initially.(1,22,23) The next phase functions
correspond to densities of hydrodynamic variables p(r; t), j(r; t) and S(r; t):
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The choice of Q q ( x N ; t) depends mainly on nonequilibrium state of the
system under consideration. In the case of low density gases, where times
of free motion are essentially greater then collision times, higher-order
distribution functions of particles become depend on time via oneparticle
distribution functions only.(5) It does mean that an abbreviated description
of nonequilibrium states is available, and the total nonequilibrium distribu-
tion function depends on time via f1(x; t). In such a case, the quasiequili-
brium distribution function Qq(x

N; t) reads:(5)



where &(t), B ( r ; t), a(x; t) are the Lagrange multipliers. P(t) is the
Massieu-Planck functional, which is determined from the condition of
normalization for Q ( X N ; t): f d F N Q q ( x N ; t) = 1. Relation (2.8) for Qq(x

N; t)
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where n1(x) and nn(x, x') are the one- and two-particle microscopic phase
densities by Klimontovich.(13) Relations (2.6) show a distinctive role of
potential interaction energy. In contrary to p(r; t) = < p ( r ) > ' and j ( r ; t ) =
<j( r )> ' , nonequilibrium values of the total energy f(r; t) = < f ( r ) > ' can not
be expressed via oneparticle distribution function f1(x; t) = ( n l ( x ) > '
exclusively, because to evaluate a potential part of f int(r; t) = <4int(r)>' it is
necessary to involve the twoparticle distribution function f2(x, x'; t) =
<n 2 (x , x ' ) > t . Here

is the density of potential energy of interaction. The next conclusion can be
formulated as follows. If oneparticle distribution function f1(x; t) is chosen
as a parameter of the abbreviated description, then the density of interaction
energy (2.7) can be considered as an additional independent parameter.
One can find the quasiequilibrium distribution function rq(x

N; t) from the
condition of extremum for the functional of informational entropy Sint(t) =
\ d r N Q ( x N ; t ) I n Q ( x N ; t ) at fixed average values of ( n 1 ( x ) > ' = f1(x; t),
<E i n t(

r)> t = <Eint(r; t) including the normalization condition for Q(XN; t).
After simple transformations the desired relation for the quasiequilibrium
distribution function reads



has been obtained for the first time in ref. 22. To determine the physical
meaning of parameters B(r; t) and a(x; t) let us rewrite Q^(XN; t) (2.8) in the
form
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where E'(r) is the density of total energy in a reference frame, which runs
together a system element with the mass velocity V(r; t):(23,24)

Here n(r) = j dp n 1 ( x ] is the density of particles number. Parameters B(r; t)
and a ' ( x ; t ) in (2.10) are defined from conditions of self-consistency,
namely, the equality of quasiaveraging values < n 1 ( x ) > ' q and <E"r)> t

q to
their real average values < n 1 ( x ) > t , < E ' ( r ) > t :

Here < • • • > tq = J dFN • • • Q q (xN ; t). In these transformations parameters
a'(x; t) and a(x; t) are connected by the relation

In the case, when conditions (2.12) take place, one can obtain some rela-
tions, taking into account the self-consistency conditions and varying the
modified Massieu-Planck functional

with respect to parameters B(r; t) and a'(x; t)
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It means that the parameter B(r; t) is conjugated to the average energy in
an accompanying reference frame, a'(x; t) is conjugated to the nonequi-
librium oneparticle distribution function f1(x; t). To determine the physical
meaning of these parameters let us define entropy of the system taking into
account the selfconsistency conditions (2.12)

Taking functional derivatives of S(t) (2.14) with respect to < E ' ( r )> t and
< n 1 ( x ) > t at fixed corresponding averaged values gives the following
thermodynamic relations:

Hence, B(r; t) is an analogue of local inverse temperature.
In general case, when kinetic and hydrodynamic processes are con-

sidered simultaneously, the quasiequilibrium distribution function (2.10) or
(2.8) can be rewritten in somewhat other form. This form is more con-
venient for comparison with Q q ( X N ; t) (2.5), obtained in the usual way,(5)

when f1(x; t) is only the parameter of the abbreviated description. First of
all, let us note that one can include the parameter 0(t) in (2.8) into
parameter a(x; t) as a term, which does not depend on x. Parameter a(x; t)
in Qq(x

N; t) can be excluded with the help of the self-consistency condition
( n 1 ( x ) y ' q = ( n ( x ) y ' = f1(x; t). Reducing of Qq(x

N; t) results in

where functions u(r1; t) are obtained from the relations

n(r; t) = <n( r )> t = j dp f1(x; t) is the nonequilibrium particles concentra-
tion. In last expression (2.16), U N ( r ; t) and u(r1; t) depend explicitly and
implicitly, respectively, on n(r; t) and B(r; t) (or E ' ( r )> t ) . To obtain the



ordinary Bogolubov scheme,(5) it is necessary to put U N ( r ; t) = 0 in (2.16)
and (2.17). Then, one can define u = e, and (2.16) transforms into the
quasiequilibrium distribution (2.5) as it should be. In general case u(r; t) is
a functional of nonequilibrium density of particles number < n ( r ) > t and
B(r; t), which is an analogue of local inverse temperature. Nevertheless, one
should handle with care with this analogy as far as definition (2.16) can
describe states which are far from local equilibrium. In particular, f1(x; t)
can distinguish considerably from the local Maxwellian distribution. The
entropy expression (2.14) can be transformed accordingly to the structure
of the quasiequilibrium distribution function (2.16)
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Here "potential" and "kinetic" parts are separated. In the case of low density
gases, the influence of the potential energy can be neglected and u(r; t) = e.
Then the expression (2.18) tends to the usual Boltzmann entropy.

3. THE MODIFIED GROUP EXPANSIONS

Integrating equation (2.4) over the phase space of (N—s) particles, we
obtain the equation chain for the s-particle nonequilibrium distribution
function f s ( x s ; t) = J dF N _ s Q ( x N ; t):(1,22)

where gs(rs; t) = J dFN_sdps Qq(x
N, t) is the quasiequilibrium .y-particle

coordinate distribution function, which depends on n ( r ; t ) and B(r; t) func-
tionally. Due to the fact, that g1(r1; t) = 1, the equation chain (3.1) is dis-
tinguished from the ordinary BBGKY hierarchy(18) by the existence of
sources in the right-hand parts of the equations beginning from the second
one. Such sources take into account both one-particle and collective hydro-
dynamical effects.

Let us note, that equation chain (3.1) should be amplified by equa-
tions for spatial quasiequilibrium distribution functions g s (r s ; t), which
functionally depend on nonequilibrium density of particles number n(r; t)
and "inversed" local temperature B(r; t). Specifically, it has been shown
in ref. 26, that pair quasiequilibrium distribution function g2(r4

, r2;t) is
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connected with a pair quasiequilibrium correlation function: h2(r1 , r2; t) =
g2(r1, r2;t) — 1- On its turn, h 2 ( r 1 , r 2 ; t ) satisfies the Ornstein-Zernike
equation

where c2(r1, r2; t) is a direct quasiequilibrium correlation function.
To analyze the BBGKY hierarchy, we follow similarly to the papers

by Zubarev and Novikov,(5,19,21) and earlier papers by(6) and Cohen,(4,7)

and cross from nonequilibrium distribution functions fs(x
s; t) to irreducible

distribution ones Gs(x
s; t), which may be introduced by equalities presen-

ted in refs. 5 and 6. In our case with some modifications we obtain

Here, the position-dependent quasiequilibrium distribution functions
g 2 ( r 1 , r 2 ; t ) , g3(r1, r2,r3; t), gs(r

s;t) are defined by relations of paper.(1)

The modification of group expansions (3.2) consists in that a considerable
part of the space time correlations is accumulated in quasiequilibrium func-
tions gs(r

s; t). If all gs(r
s; t) = 1 for s = 2, 3,... these group expansions coin-

cide with those of paper ref. 5. As far as each line in (3.2) brings exactly
for new functions Gs(r

s; t), 5=1,2, 3,..., the corresponding equations can be
solved with respect to irreducible distribution functions and we may write
the following:
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In (3.2) and (3.3) the symbol £p denotes the sum of all different permuta-
tions of coordinates for three and more particles,

where h'3(rl, r2, r3: t) the three-particle quasiequilibrium correlation func-
tion. Now let us write the BBGKY hierarchy(1,2) for irreducible distribution
functions Gs(x

s; t), namely, the first two equations,

Differentiating the relation for G 2 ( x 1 , x 2 ; t ) in (3.3) with respect to time
and using the second equation from the BBGKY hierarchy for the function
f 2 ( x 1 , x 2 ; t), we can get for the pair irreducible distribution function
G2(x1 , x 2 ; t ) the equation, which reads

In a similar way, we can obtain other equations for the three-particle
irreducible function G3(xl ,x2,x3;t) and higher Gs(xs; t) ones. One remembers
now, that appearing the quasiequilibrium distribution functions g2(r1 , r2; t),
g (r1; r2, r3; t), gs(r; t) in the hierarchy is closely connected with the fact
that the boundary conditions for solutions of the Liouville equation take
into consideration both the nonequilibrium character of one-particle dis-
tribution function and local conservation laws, that corresponds to a con-
sistent description of kinetics and hydrodynamics of the system.(1, 22) Since
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in the present paper we analyze two first equations (3.5) and (3.6) only, we
will not write down next ones. It is important to note, that if we put for-
mally gs(r

s; t) = 1 for all s = 2, 3,... in (3.5) and (3.6), we come to the first
two equations of the BBGKY hierarchy for irreducible distribution func-
tions G 1 ( x 1 ; t) and G 2 (x 1 , x2; t), which were obtained in the paper ref. 5 by
Zubarev and Novikov. The first term in the right-hand side of (3.6) is a
peculiarity of (3.5) and (3.6) equations system. This is the term with time
derivative of the pair quasiequilibrium distribution function g2(r1, r2;t). As
it was shown in refs. 1, 22, and 23, the pair quasiequilibrium distribution
function is a functional of local values of the temperature B(r; t) and the
mean particle density n(r; t). Thus, time derivatives of g2(r1, r2 |B(t)> n(t))
will be conformed to B(r; t) and n(r; t). These quantities, in its turn, accord-
ing to the self-consistency conditions,(23) will be expressed via the average
energy value <E'(r)> t in an accompanying reference frame and via <n( r )> t ,
which constitute a basis of the hydrodynamical description of nonequi-
librium state of the system.

If we neglect the term in the right-hand side of equation (3.6), which
takes into account ternary correlations between particles, we shall obtain
from (3.6) the equation in the so-called "pair" collisions approximation
with the following form:

The formal solution to this equation reads

Inserting this solution into the first equation (3.5) we obtain the following
kinetic equation for one-particle distribution function f 1 (x 1 ; t) = G 1 ( x 1 ; t):
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where the first term in the right-hand side is a generalization of the Vlasov
mean field and corresponds to kinetic mean field theory, KMFT.(27,28) The
kinetic equation (3.9) is completely equivalent to that of ref. 1, which is
obtained in the "pair" collisions approximation.

Let us consider now the set of equations (3.5) and (3.6) in such an
approximation that the threeparticle irreducible distribution function
G 3 ( x 1 , x2, x3; t) and h 3 ( r 1 , r2, r3; t) are neglected in the second equation
(3.6). This is in the spirit of the polarization approximation introduced for
obtaining the Lenard-Balescu kinetic equation for a homogeneous
Coulomb plasma.(15) Taking into account (3.4) as well as the relation
G 3 (x 1 , x2, x 3 ; t ) = Q and similarly h 3(r 1 , r2, r3; t) = 0, we rewrite the equa-
tion (3.6) in the form:

Next, let us introduce the operator, which can be obtained by variation of
the Vlasov collision integral near a nonequilibrium distribution G 1 ( x 1 ; t):

Then one represents the equation (3.10) with the help of operator y ( x 1 ; t)
in the form



Solutions to the BBGKY Hierarchy 985

from which the formal solution for the irreducible two-particle distribution
function reads

and U(t, t') is the evolution operator,

As a result, we obtain the expression for the irreducible quasiequilibrium
two-particle distribution function G 2 (x 1 , x 2 ; t) in the generalized polariza-
tion approximation. Inserting this expression (3.13) into the first equation
of the chain (3.5) yields:

This is the kinetic equation for the nonequilibrium oneparticle distribution
function with the nonMarkovian collision integral in the generalized
polarization approximation. It is necessary to note, that the presence of the
Vlasov's operator y ( x 1 , x 2 ; t ) in the collision integral (3.15) indicates
about taking into consideration collective effects. An analysis of the colli-
sion integral (3.15) in the general case is rather a complicated problem. But
it is obvious, that the collision integral in (3.15), or the expression for
G 2 ( x 1 , x2; t) in (3.13) may be much simplified for every physical model of
a particle system, or for each nonequilibrium state of the collision integral
in (3.15). To show this, we shall consider two concrete cases: a hard
spheres model and a Coulomb plasma.

4. HARD SPHERES MODELS IN THE POLARIZATION
APPROXIMATION

In this section we shall perform the investigation of kinetic processes
for hard spheres model in approximations, which are higher than "pair"



collisions one. We take into account the character of model parameters and
the results of the previous section of this article and papers of refs. 14, 15,
and 29. This investigation is convenient to carry out on the basis of equa-
tion chain (3.5), (3.6) at formal substitution of a potential part of the
Liouville operator iL(l, 2) (refs. 1 and 2) by the Enskog collision operator
T( l , 2). (1 ,2) In this case, equations (3.5) and (3.6) have the form

Further, we will consider the same approximations concerning to equation
(4.2), in which G 3 (x 1 ,x2 , x3; t) and h 3 (r 1 , r2, r3; t) are neglected. Then, if
we introduce similarly to (3.11) the Boltzmann-Enskog collision operator
C ( X 1 ; t), the equation (4.2) could be rewritten in the next form:
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Hence it appears, that the formal solution to G 2 ( x 1 , x2; t) reads

where Uhs(t, t') is the evolution operator for the system of hard spheres:

Now let us put (4.5) into the first equation (4.1). Then the resulting equation
looks:

This equation can be called as a generalized kinetic equation for the non-
equilibrium one-particle distribution function of hard spheres with the non-
Markovian collision integral in the generalized polarization approximation.
The first term in the right-hand side of this equation is the collision integral
from the revised Enskog theory.(30) Neglecting time retardation effects and
assuming that the operator C ( x 1 , x 2 ; t ) does not depend on time when

is the local equilibrium Maxwell distribution function, the next term can be
rewritten in a simplified form,
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where

R 1 ( x 1 ; t , t ' ) is the generalized ring operator. The kinetic equation (4.7)
together with (4.9), (4.10) is the generalization of the kinetic equation for
a system of hard spheres, which has been obtained by Bogolubov in refs.
15 and 29. It coincides with that, when the quasiequilibrium pair distribu-
tion function of hard spheres is set formally to be unity.

5. COULOMB PLASMA IN THE POLARIZATION
APPROXIMATION

Here we shall study an electron gas, which is contained into a homog-
eneous positively charged equilibrating background. This background can
be created, for example, by hard motionless ions. Then, electrons interact
according to the Coulomb law:

the Fourier transform of which exists in the form of a real function 0(|k|):

here k is a wavevector, e is the electron charge. Let us consider equation
chain (3.5), (3.10) in the homogeneous case, when G 1 ( x 1 ; t) = G 1 ( p 1 ; t) and
pair distribution functions depend on |r12|. Following the Bogolubov
method,(15,18) we shall suppose that the one-particle distribution function
G 1 (P 1 ; t ) is calculated in the "zeroth" order on interaction constant q,
pair distribution functions G2(r12, pl, p2; t) and g 2(r 1 2 ; t ) as the first order
on q, and G 3 (x 1 , x2,x3; t), g3(r1, r2, r3; t)~q2, where q = e2/rd6, rd =
^/0/4ne2n is the Debye radius, n = N/V, 0 = kBT, kB is the Boltzmann
constant, T is thermodynamic temperature. Therefore, to obtain an equa-
tion for G2(r12, P1, p2; t) in the first approximation on interaction constant
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q without time retardment effects, it is necessary to retain all integral terms,
but omit all the others. In this case, using the Fourier transform with
respect to spatial coordinates for a homogeneous Coulomb electron gas,
the set of equations (3.5), (3.10) yields:

or

equation for G2(k, P1, p2; t):

e -» +0, and G2(k, P1 ; t) = J dp2 G2(k, p1, p2; t); 3m g2(k; t), 3m G2(x1, x2; t)
are imaginary parts of the corresponding distribution functions. The
following properties should be noted:
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The solution to (5.3), neglecting time retardment effects, reads:

It should be noticed also that equation (5.2) contains an imaginary
part of the pair irreducible nonequilibrium distribution function, to be
integrated with respect to momentum of the second particle. Now one
integrates equation (5.4) over all values of momentum p2 and defines in
such a way some function G2(k, p 1 ; t ) :

Further, we should exclude from (5.5) the term with G 2 ( — k , p2; t). To do
this, we follow Lenard(33,34) and integrate the equation (5.5) over momen-
tum component p11, which is perpendicular to wavevector k. Resulting
expression then reads:
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Here the following conventional designations have been introduced:

If we extract imaginary part of this equation, one can find unknown quan-
tity 3m G2(k, P1; t) provided 3m G2(k, p 1 ; t ) = 0:(33)

Since 3m/(k, p1; t)= — n ( d / d p 1 ) G 1 (p 1 ; t),(33,34) putting the expression for
3m G2(k, p1; t) into the equation (5.2) gives the generalized Bogolubov-
Lenard-Balescu kinetic equation for an electron gas in an equilibrating
background

Now we multiply both equations (5.5) and (5.6) on ( d / d p 1 G1(p1 ; t) and
( d / d p 1 ) G 1 (p 1 ; t), respectively, and subtract them:



where rD denotes the Debye radius

At other combinations one arrives at false expressions for thermodynamic
functions.(13) Dynamical screening, appearing in the obtained by us
generalized Bogolubov-Lenard-Balescu collision integral, is free of these

the influence of particles interaction into plasma energy will be defined by
correlation function g2(r). Its asymptotic is
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where Q(p1, p2; t) is a second rank tensor

which coincides with Q ( p 1 , p2) (ref. 32) at 3m g 2 ( k ; t ) = 1 . ln this case, the
kinetic equation (5.10) transforms into the well-known Lenard-Balescu
equation.(32-34) Evidently, the generalized Bogolubov-Lenard-Balescu
kinetic equation (5.10) climes the description of a dense electron gas, since
in the both generalized mean field and generalized Bogolubov-Lenard-
Balescu collision integrals, manyparticle correlations are treated by
imaginary part of g 2 ( k ; t ) . Nevertheless, the problem of divergence in the
collision integral of equation (5.10) at small distances ( k - > i ) still
remains. There are papers, where divergence of collision integrals is
avoided with the help of special choice of differential cross section (quan-
tum systems(35)), or via combination of simpler collision integrals (classical
systems(13)). These generalization for collision integrals are attractive by
theirs simplicity and are usable for ideal plasma. But, contrary to the
obtained by us Bogolubov-Lenard-Balescu kinetic equation, they do not
work for nonideal plasma. In accordance to the proposed structure of colli-
sion integral



discrepancies. Generally speaking, the problem of divergency could be
solved within a frame of charged hard spheres model, combining the results
of this section and previous one. But this step constitutes an intricate and
complicated problem and needs a separate consideration.

Evidently, an investigation of the obtained kinetic equation is impor-
tant in view of its solutions and studying transport Coefficients and time
correlation functions for model systems.

6. CONCLUSION

In view of dense systems study, where the consideration of spatially
interparticle correlations is important, the BBGKY hierarchy (3.5), (3.6)
with the modified boundary conditions and group expansions has a quite
good perspective. The kinetic equation (4.7)-(4.10) is a generalization of
the Bogolubov one(15,29) for a system of hard spheres. Ernst and
Dorfman(31) had investigated collective modes in a nonhomogeneous gas
and showed, that the solution of a dispersion equation for hydrodynamic
modes leads to the nonanalytic frequency dependence on wavevector. This
is connected with the fact, that the ring operator for nonhomogeneous
systems at small wavenumbers has a term proportional to ^/k. Similar
investigations of collective modes and time correlation functions in the
hydrodynamic region have been carried out by Bogolubov.(15,29,32)

Nevertheless, it is necessary to carry out analogous investigations of hydro-
dynamic collective modes and time correlation functions on the basis of
kinetic equation (4.7), taking into account (4.8)-(4.10), where some part
of space correlations is considered in the pair quasiequilibrium function
g 2 ( r 1 , r2; t). Obviously, these results may appear to be good for very dense
gases, which could be described by a hard spheres model. An important
factor is that in the kinetic equation (4.7)-(4.10) as well as in the
generalized Bogolubov-Lenard-Balescu one, collective effects are taking
into account both via Vlasov's mean field and pair quasiequilibrium
correlation function, which is a functional of nonequilibrium values of tem-
perature and chemical potential.

Transferring the obtained results on quantum systems is not obvious.
Such a procedure is rather complicated and needs additional investigations.
Nevertheless, some steps in this way have been done already by our
colleagues.(36,37)
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